Search results for "sum frequency generation"
showing 9 items of 9 documents
Microscopic Insights into the Fluorite/Water Interfaces from Vibrational Sum Frequency Generation Spectroscopy
2016
Water/mineral interfaces are central to a wide range of environmental and technological processes. In this report we provide a quantitative, molecular-level understanding of the CaF2/water interface using Density Functional Theory-based molecular dynamics simulations. In particular through the comparison of calculated Vibrational Sum Frequency Generation spectra to the experimental ones, we give a structural characterisation of the interface at different pH. At low pH, the surface is positively charged, causing a substantial degree of water ordering. Our results suggest that the surface charge originates from the dissolution of fluoride ions of the topmost layer, rather than from proton ads…
Oxide/water interfaces: how the surface chemistry modifies interfacial water properties
2012
The organization of water at the interface with silica and alumina oxides is analysed using density functional theory-based molecular dynamics simulation (DFT-MD). The interfacial hydrogen bonding is investigated in detail and related to the chemistry of the oxide surfaces by computing the surface charge density and acidity. We find that water molecules hydrogen-bonded to the surface have different orientations depending on the strength of the hydrogen bonds and use this observation to explain the features in the surface vibrational spectra measured by sum frequency generation spectroscopy. In particular, 'ice-like' and 'liquid-like' features in these spectra are interpreted as the result o…
Membrane Structure of Aquaporin Observed with Combined Experimental and Theoretical Sum Frequency Generation Spectroscopy
2021
High-resolution structural information on membrane proteins is essential for understanding cell biology and for the structure-based design of new medical drugs and drug delivery strategies. X-ray diffraction (XRD) can provide angstrom-level information about the structure of membrane proteins, yet for XRD experiments, proteins are removed from their native membrane environment, chemically stabilized, and crystallized, all of which can compromise the conformation. Here, we describe how a combination of surface-sensitive vibrational spectroscopy and molecular dynamics simulations can account for the native membrane environment. We observe the structure of a glycerol facilitator channel (GlpF)…
Vibrational Sum Frequency Generation Spectroscopy of the Water Liquid–Vapor Interface from Density Functional Theory-Based Molecular Dynamics Simulat…
2013
International audience; The vibrational sum frequency generation (VSFG) spectrum of the water liquid-vapor (LV) interface is calculated using density functional theory-based molecular dynamics simulations. The real and imaginary parts of the spectrum are in good agreement with the experimental data, and we provide an assignment of the SFG bands according to the dipole orientation of the interfacial water molecules. We use an instantaneous definition of the surface, which is more adapted to the study of interfacial phenomena than the Gibbs dividing surface. By calculating the vibrational (infrared, Raman) properties for interfaces of varying thickness, we show that the bulk spectra signature…
Liquid–solid interfaces: structure and dynamics from spectroscopy and simulations
2014
Liquid–solid interfaces play an important role in a number of phenomena encountered in biological, chemical and physical processes. Surface-induced changes of the material properties are not only important for the solid support but also for the liquid itself. In particular, it is now well established that water at the interface is substantially different from bulk water, even in the proximity of apparently inert surfaces such as a simple metal. The complex chemistry at liquid–solid interfaces is typically fundamental to heterogeneous catalysis and electrochemistry, and has become especially topical in connection with the search for new materials for energy production. A quite remarkable exa…
Lipid carbonyl groups terminate the hydrogen bond network of membrane-bound water.
2015
We present a combined experimental sum-frequency generation (SFG) spectroscopy and ab initio molecular dynamics simulations study to clarify the structure and orientation of water at zwitterionic phosphatidylcholine (PC) lipid and amine N-oxide (AO) surfactant monolayers. Simulated O-H stretch SFG spectra of water show good agreement with the experimental data. The SFG response at the PC interface exhibits positive peaks, whereas both negative and positive bands are present for the similar zwitterionic AO interface. The positive peaks at the water/PC interface are attributed to water interacting with the lipid carbonyl groups, which act as efficient hydrogen bond acceptors. This allows the …
Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice
2017
On the surface of water ice, a quasi-liquid layer (QLL) has been extensively reported at temperatures below its bulk melting point at 273 K. Approaching the bulk melting temperature from below, the thickness of the QLL is known to increase. To elucidate the precise temperature variation of the QLL, and its nature, we investigate the surface melting of hexagonal ice by combining noncontact, surface-specific vibrational sum frequency generation (SFG) spectroscopy and spectra calculated from molecular dynamics simulations. Using SFG, we probe the outermost water layers of distinct single crystalline ice faces at different temperatures. For the basal face, a stepwise, sudden weakening of the hy…
Sum Frequency Generation Spectra from Velocity-Velocity Correlation Functions: New Developments and Applications
2018
At the interface, the properties of water can be rather different from those observed in the bulk. In this chapter we present an overview of our computational approach to understand water structure and dynamics at the interface including atomistic and electronic structure details. In particular we show how Density Functional Theory-based molecular dynamics simulations (DFT-MD) of water interfaces can provide a microscopic interpretation of recent experimental results from surface sensitive vibrational Sum Frequency Generation spectroscopy (SFG). In our recent work we developed an expression for the calculation of the SFG spectra of water interfaces which is based on the projection of the at…
Role of Surface Chemistry in the Superhydrophobicity of the Springtail Orchesella cincta (Insecta:Collembola)
2020
Collembola are ancient arthropods living in soil with extensive exposure to dirt, bacteria, and fungi. To protect from the harsh environmental conditions and to retain a layer of air for breathing when submerged in water, they have evolved a superhydrophobic, liquid-repelling cuticle surface. The nonfouling and self-cleaning properties of springtail cuticle make it an interesting target of biomimetic materials design. Recent research has mainly focused on the intricate microstructures at the cuticle surface. Here we study the role of the cuticle chemistry for the Collembola species Orchesella cincta (Collembola, Entomobryidae). O. cincta uses a relatively simple cuticle structure with prima…